home..

Lecture04 hmms1_2_ evaluation, parsing, posterior decoding, learning, hmm architectures

Lectures ML_in_genomics

HMM basic, evaluation, parsing, posterior decoding

Observation, Models, Bayes’ rule, Bayesian inference

image.png 通过观测每天天气推断所处季节时,observations指的是能够直接观测获取到的数据(每天的天气),可以推断处于某个季节观测到某种天气的概率 该模型构建的目的就是通过P(observation|season) 推断P(season|observation) 可以通过Bayes’ Rule计算得:

image.png

Markov Chains and Hidden Markov Models

image.png

Calculating joint probability of one (seq, parse) P(x, $\pi$)

image.png

image.png

Posterior Decoding

Increasing the ‘state’ space/adding memory

Finding GC-rich regions vs. finding CpG islands

Gene structures GENSCAN, chromatin ChromHMM

Learning (ML training, Baum-Welch, Viterbi training)

Supervised

Unsupervised

Conditional Random Fields (CRFs) & dependencies

© 2025 zying   •  Powered by Soopr   •  Theme  Moonwalk